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Abstract—This paper addresses two issues related to pixels in a local or global context. A number of anomaly
the detection of hyperspectral anomalies. The first issue detectors have been developed for hyperspectral datasets,

is the evaluation of anomaly detector performance even many of which are surveyed by Stest al.[1], and more
when labeled data is not available. The second issue is . B
recently by Matteoliet. al. [2]

the estimation of the covariance structure of the data in ‘ )
local detection methods, such as the RX detector, when Local detectors form an important class of algorithms.
the number of available training pixels n is not much They work using a statistical model of the background
larger than (and may even be smaller than) the data pixels in the local neighborhood of the pixel under test.
dimensionality p. =~ In general, only the pixels within a sliding window are
Our first contribution is to formulate and employ a . .
mean-log-volume approach for evaluating local anomaly used to estimate properties of lth.e local con'text. To the
detectors. Traditionally, the evaluation of a detectors e€xtent that the background statistical properties are non-
accuracy has been problematic. Anomalies are loosely stationary across the image, this local statistical char-
defined as pixels that are unusual with respect to the other acterization has the potential to improve the detection
pixels in a local or global context. This loose definition accuracy. One problem with these local methods is that
makes it easy to develop anomaly detection algorithms th b f traini | ixel ded f
— and many have been proposed — but more difficult to € num .er ot training Samp es (pixels), needed for a
evaluate or compare them. Our mean_|og_vo|ume approach gOOd estimate Of the covariance must be at |eaS'[ as |al’ge
allows for an effective evaluation of a detector’s accuracy as the data dimensionality (number of spectral bangs),
Withqqt requiring labeled testing data or an overly-specific and preferably should be several times larger tha3],
definition of an anomaly. o [4] This n > p requirement rules out small window
The second contribution is to investigate the use of . L . .
the Sparse Matrix Transform (SMT) to model the local ~SIZES- The potentla_l increase in detection accuracy due to
covariance structure of hyperspectra| images_ The SMT the |Oca| Chal’aCterlzatIOI’l Of the background (|n a Sma”
has been previously shown to provide full rank estimates window) is compromised by the lack of adequate training
of large covariance matrices even in then < p scenario. samples needed to estimate the covariance.

Traditionally, the number of training pixels needed for Another way to address the covariance estimation
good estimates of the covariance needs to be at least as bl is t the S Matrix T f SMT
large as the data dimensionality (and preferably it should problem is to use the Sparse Matrix Transform ( )-

be Severa' times |arger)' Therefore' When one dep|oys the The SMT pI’OVIdeS fu” I’ank eStImatES Of |arge Cova”ance
RX detector in a sliding window, the choices to select matrices even when the number of training samples
small window sizes are limited because of thex > p is smaller than the data dimensionaljty [5] We have
restriction associated to the covariance est_imation. Our recently shown that the SMT improves the accuracy of
results suggest that RX-style detectors using the SMT ,, .

covariance estimates perform favorably compared to other global” anomaly detectors. [6] .In this paper, we _SUQ'
methods even (indeed, especially) in the regime of very 9€st that RX-style detectors using the SMT covariance
small window sizes. estimates perform favorably compared to other methods,
even in the regime of very small window sizes.

The rest of this paper is organized as follows: Sec-
Anomaly detection promises the impossible: it is tation Il formulates the anomaly detection task and reviews
get detection without knowing anything about the targethe most commonly used covariance estimation methods
In the context of hyperspectral imagery, the anomalowsed in anomaly detection; Section Il describes the SMT
pixels are those that are unusual with respect to the otteavariance estimation and how the SMT estimates yield

I. INTRODUCTION



highly accurate detectors even when small window sizesWe can incorporate the constant terms in (3) together
are used; Section IV introduces the mean-log-volumeith [, into a new threshold;, such that the significance
as a measure of detection accuracy and show howtest in (3) is equivalent to the test
can be used to select the window size that maximizes

. . . D = —utRY(x—u)=n. 4
the detection accuracy; Section V presents our main 1) = V/(x = ) RN e — 1) 2 )
experimental results. Finally, Section VI presents the The statisticDr(x) is interpreted as the Mahalanobis

main conclusions. distance between the sampteand the mean. of the
background distribution. If such distance exceeds the
Il. HYPERSPECTRALANOMALY DETECTION thresholdn, we labelx as ananomaly

In practice, one does not know the true parameters
. . . . X .2 and R of the background pixel distribution/(x, R).

p!xel regions (objects) in the hyperspectral image wWitf), o qer 1o compute the statistiDr(x) in (4) , the
pixels that differ substantially from the backgroune,, practitioner needs first to compute good estimatesd

the pixels in the regions surrounding these objects. & of 4 and R respectively, from the samples (pixels)
In general, there is no precise definition of what cony ciaple.

stitutes an anomaly. A common way of defining anoma-
lies is to say thatinomalies are not concentratefy] B. Sliding Window-based Detection
Here we assume that anomalous samples are drawn fronThe RX detection algorithm [9], [10] uses a sliding
a broad, uniform distribution with a much larger supposvindow centered at the pixel, as illustrated in Fig. 1.
than the distribution of typicali., not anomalous) The window pixels are used to compute the covariance
samples. This assumption allows us to describe anomalstimate i of the background. As argued in [2] the
detection in terms of a binary classification problem. pixels closest tac within the Guard windoware left out

of the estimation to avoid contaminating the estimate
A. Anomaly Detection as Binary Classification with potentially anomalous pixels. The dimension of

Let x be ap-dimensional random vector. We want tghe Quafd window is chosen accord?ng to th? expegted
classify x as typical if it is drawn from a multivariate Maximum siz€ of an anomalous Obj,eCt' An Interesting
Gaussian distribution (s, R), or asanomalousf it is variation c_Jf the_ RX detector (not investigated here)
drawn from a uniform distributio/(z) = ¢, where- uses a third window around, larger than the guard

is some constant. Formally, we have the following h})ivmdow but smaller thar_l th_e OL_Jter window, to es_tlmate
the meanu. [2] The motivation is that a good estimate

Hyperspectral anomaly detection consists in ﬁndinrf%

potheses: ) k '
of the mean requires fewer pixels than a good estimate
Ho: x~N(uR) of the covariance.
Hy: x~ U, (1)  The pixels within the outer window are used as the

training pixels in the estimation of the covariance ma-
where?H, and 7, are referred as theull andalterna- trix R. The choice of the window size is a compromise
tive hypotheses respectively. According to tNeyman- between two factors: (i) The window should be small
Pearsonlemma [8], optimal classifier has the form of aenough that it covers a homogeneous region of the

log-likelihood ratio test background, therefore, being accurately modeled by the
_ multivariate GaussiaV (i, R); (ii) The window should

I(x) = 1og{p(X’Hl)} = o, (2) be large enough that the number of pixels within the

p(x; Ho) outer window is enough to produce reliable estimates of

the covarianceR. At leastp + 1 pixels are required for

that maximizes the probability of detectiop(H1;H1) X , X
non-singular sample covariance estimates.

for a fixed probability of false alarmy(#; H,), which

is controlled by the thresholk. C. Covariance Estimation Methods
The log-likelihood ratio testin (2) can be written as | his section, we discuss some of the methods used
. to estimate the covariance matrik
] p(x;Ha) .
(x) =log Do) | = log ¢ — log p(x; Ho) 1) Sample Covariancetet X = [xi,--- ,x,] be the
Pix; #o 1 set of n i.i.d. p-dimensional Gaussian random vectors
=logc+ glog 21 + 3 log | R drawn fromA/(0, R). The sample covariancg is given
by
1 _
+ o= R =) 2 0 ®) s=txxt,
n



The most common variation of the shrinkage
'« Outer window method [11], [12] uses?I as the shrinkage target, where

o? is the average variance across all fheimensions

Guard window and [ is the p x p identity matrix. The covariance

N estimator is given by
\ R=(1-a)S+ac’l. (6)
™\ Pixel x

A variation of (5) proposed by Hoffbeck and Land-

grebe [13] used = diag(S) as the shrinkage target,

Fig. 1. Square sliding window used in the RX detection altani resulting in the following shrinkage estimator

The pixels in the outer window are used to compute the covegian A
estimate R of the background surrounding the pixel The pixels R = (1 - O‘)S +aD. (7)
within the inner window (referred as ttguard windoware not used

in the cpvariar;]ce co_mpu;ation to avoid that potential anoosafuxels The authors in [13] also propose a computationally
contaminate the estimate. efficient leave-one-out cross-validation (LOOC) scheme
to estimatex in (7) .
which is the unconstrained maximum likelihood estimate 4) Quasilocal CovarianceThis method proposed by
of R. [8] Caeferet. al. [14] considers the eigen-decomposition
Whenn < p, the sample covariancé is singular of the covariance matri = EAE!, and makes the
with rank n and overfitsthe data. As argued in [3], [2], ©PServation that the eigenvalues in the mairiare more
in the case of hyperspectral data, it is usually desiradj§€lY to change across different image locations while
to haven > 10p so thatS is a reliable estimate oR. the eigenvectors il remain mostly pointed to the same
But even whem is small ands is by itself unreliable, diréctions across the entire image. _
the sample covariance is still useful as a starting point The observation above suggests that one can obtain
for the regularized shrinkage estimates reviewed beldiy 9lobal estimate of the eigenvector matix using
as well as the SMT introduced in Section II. all the pixels in the image, and then can adjust the
2) Diagonal: Because it is the inverse df that is €igenvalues inA locally by computing the variances
used in (4) , it is important that the estimate Bfbe m_de_pendent!y_m ea(_:h dlrectlpn using only pixels th_at are
full-rank. A simple way to obtain a full-rank estimate?ithin the sliding window. Since the number of pixels
of R with a small number of samples(especially when 1" the entire image, we typically have > p, and so
n < p) is to treat all thep dimensions as uncorrelatedth® sample covariancé will provide a full-rank global
and simply estimate the variances for each of the estimate and its eigenvectots,;.,,; can be used as the

coordinates. This results in the estimator estimates ofr across all positions of the sliding window.
Finally, the estimate of the matrik is computed locally
D = diag(S), at each position of the sliding window, by computing

o _ variances in each of the global eigenvector directions.
which is genera”y of full-rank and can be well es“mated’his approach results in thquas”ocal estimator of
even with smalln. However, D tends tounderfitthe covariance:

the data since the assumptions that the coordinates are

uncorrelated is typically unrealistic. R = EgoparAiocar Elypar-
3) Shrinkage:The shrinkage estimation is a very pop-
ular method of regularizing estimates of large covariance !ll. THE SPARSEMATRIX TRANSFORM(SMT)

matrices. [11], [12], [13] It is based on the combination
of the sample covariance matri that overfitsthe data
with another estimatofl’ (called the shrinkage target)
that underfitsthe data:

The Sparse Matrix Transform (SMT) [5], [6] can be
used to provide full-rank estimates of the covariance
matrix R used in the detection framework in Section II.

The method decomposes the true covariaftento
R=(1-a)S+aT, (5) the productR = EAE', where E is the orthonormal

matrix containing the eigenvectors @@ and A is a
where o € [0,1]. The choice of the valuex that diagonal matrix containing the eigenvalues Bf The
maximizes the likelihood of the estimafe is typically SMT then provides the estimates and A with the
done through a cross-validation procedure. diagonal elements af being strictly positive.



A. SMT Covariance Estimation i.e, the most correlated pair of coordinates, and choose
Given a training set with independenp-dimensional the angle

i.i.d random vectors drawn from the multivariate Gaus- 1, —2(Sk-1)ij0

sian (0, R), and organized into the data matrk = O = §tan ((S T — Sk )

[X1,- - ,X,]. The Gaussian likelihood of observing the i ki

data X is given by that completely decorrelates thig and j, dimensions.

This greedy optimization procedure can be done fast if

—n/2 . . H
I(X;R) = Lﬂb/z exp {—1trace(R_15')} ., (8) @ graphical constraint can be imposed to the data. [15]
(2m)me 2 Finally, for an SMT of ordeis, we have the estimates
whereS = L X X" is the sample covariance, a sufficient Ee — GG (13)
statistic for the likelihood of the dat&. The joint T R
maximization of (8) with respect t& and A results in Ag = diag(EkSEK) , (14)
the maximum likelihood (ML) estimates with the covariance estimate given by
E = in {|diag(E'SE 9 R o
A8 e {|diag(F*SE)|} © Rsyur = ExAgEj. (15)
A = diag(E'SE) , (10)

B. SMT Model Order

whereQ)x is the set of allowed orthonormal transforms. The model order parametéf can be estimated using

If n > p, and the setly includes all orthonormal ¢4q validation [5], [15], a Wishart Criterion [6], or the
transforms, then the solution to (?) and (10) is giVeinimum description length (MDL) approach derived
by the sample_ covarance.g, EAE" = S. However, , [6]. We used the MDL criterion for the experiments in
as discussed in Section Il, when < p, the sample ihis naper. According to the MDL criterion, we select the

covariance,5 overfits the data and is a poor estimatg,jiest value ofi such that the following inequality
of the true covariance. is satisfied:

In order to regularize the covariance estimate, we
impose the constraint th&tx be the set of sparse matrix [SKL% <1 —logn — 5logp
transforms (SMT) or ordeK . More specifically, we will i [SkliilSklj; ) — _eXp( ) ’
assume that the eigen-transformation has the form

n

K where Sx = EL.SEk.
Ex = H Gr=G1--Gg € Qx| (11) It is often useful to express the order of the SMT as
Pt} K = rp, wherer is the average number of rotations per

coordinate, being typically very smak & 5) for several

for a model orderK. EachGj, is a Givens rotation[5] oreviously studied datasets. [5]

over some(iy, ji) coordinate pair by an angh,,

Gr = I+ O(ig, jr, 0r), C. Shrinkage SMT
The SMT covariance estimate in (15) can be used

where . . . :
o o as a shrinkage target, alternative to the ones described in
cos(f) =1 if i=j =iy Ori=j=j Section 11-C3, resulting in the following Shrinkage-SMT
0], = sin(0;) it i =1y, andj = ji estimate:
v —sin(Hk) if 1= Ik andj =i ’

0 otherwise R=(1-a)S+aRsyr .

) (12) IV. ELLIPSOID MEAN LOG-VOLUME
and K is the model order parameter.

The optimization of (9) is non-convex, so we use !N this section, we develop théllipsoid Mean Log-
a greedy optimization approach to design each rot0lume a novel metric to evaluate the accuracy of
tion, Gy, in sequence to minimize the cost [5]: Leta_ngmaly detection algorithms that mgkg detection de-
Sk_1 = GL_ Sk_2Gi_1. At the kth step of the greedy CISIONS based on a Mahalanobis statistic suchlas
optimization, we select the pair of coordinatgs, j;) I (4) . Different versions of these detectors use dif-

such that fgrent techniqges to estir_nate the qovariance yielding
) different detection accuracies depending on how well the
(ik, ji) = arg; ; max (Sk-1)3; covar?ance estimat® approximates the true background
: (Sk—1)ii(Sk—1)jj covarianceR.



Traditionally, receiver operating characteristics (ROQ)yperspectral bands. Fig. 2 displays a RGB rendering
curves have been widely used to evaluate anomaly detet-this dataset.
tors. The ROC approach requires both samples labeledy g experiments, a sliding window like the one
astypical and samples labeled amomalousin order 10 gescribed in Fig. 1 moves across the image and, at each
estimate the both therobability of detectionand the position it estimates the covarianézfrom the samples
probability of false alarmused in the ROC analysis. of the outer window using several covariance estimation
Unfortunately, anomalies are rare events and it is oftgfethods previously discussed. Such covariance is used
difficult to have enough data labeled asomalousin o computeDy in (4) for each pixel within the guard
order to estimate the probability of detection required ijindow. The radiusy is adjusted globally so that a
the ROC analysis. fraction of the points corresponding to a fixed probability

The approach developed here seeks to charaf:terb?Q‘alse alarm is left out of the ellipsoid region. Finally

and R) fit the training (typical) pixel data, overcomingg|| window positions and take that as the measure of
the limitation of the ROC analysis described aboveynomaly detection performance.

More specifically, we evaluate the volume of the hyper-

ellipsoid within the region Fig. 3 shows theoverage plotsvith the expected log-

volume of ellipsoidvs.the probability of false alarm for
(x — ﬂ)tfrl(x — ) <n?, (16) different window sizes. The hyperspectral bands of the
dataset were rotated to ti@uasilocalcoordinate system
where n controls the probability of false alarm, aspy the mat”XEf,zobaz (see Sec. II-C4). These “ROC-like”
described previously. Such a volume is evaluated by te@rves suggest that the regularized methods are more

following expression: accurate, especially when small window sizes are used.
/2 When large window sizes are used, the unregularized
P2\ /|R| : . L
V(R,n) = mnp. (17) sample covariance has its performance similar to the
p

regularized methods.

Smaller values o¥/(R,n) indicate smaller probabilities  Fig. 4 compares the performance of several detectors
that an anomalous data point would fall within the hypein both the original and the quasilocal coordinate systems
ellipsoid region of (16) . Based on this observation, thgt two different fixed false alarm rates. The diagonal
core idea in our approach is to use the valu&’¢f?,77) covariance estimate performs poorly in the original co-
as a proxy for the probability of missed detection. Thergydinates (Figs. 4(a) and 4(b)), but remains a compet-
fore, for a fixed probability of false alarm, smaller valuegjve method in the quasilocal coordinates (Figs. 4(c)
of V/(R,n) indicate more accurate detection. Because th@d 4(d)); in fact, the diagonal estimator in quasilocal
direct computation of/’(R, ) tends to be numerically coordinates is just the quasilocal covariance estimator
unstable, often leading to numerical overflow for largguggested by Caefet. al.[14] The Shrinkage-SMT esti-
values ofp, in practice we work withog V' (R, 7) as our mates are among the best methods in both spaces, though
measure of detection accuracy. in the quasilocal space, Shrinkage-Diagonal detectors
This approach has been used before in global anomg@rform just as well. When the window size used to
detection [6], [16], [17], but we are extending it herestimate the covariance matrix grows large, we observe
to local sliding window-based anomaly detection. Thesg@e increase in the expected ellipsoid log-volurne;,
detectors produce a different local estimate of the bacte degradation of the detection accuracy for all the
ground covariance at each location of the sliding windowethods. This degradation is due to the distribution of
across the image. We suggest measuring detection acgi& background pixels being non-stationary across the
racy in terms of the expected log-volume of the hypefmage. Therefore, the estimate of the covariance using
ellipsoid, Eflog V (R, 7)] across the whole hyperspectralarge windows tends to yield poor estimates. When smalll
image, where each different estimateis computed for window sizes are used, the training pixels are more
each position of the sliding window using local trainingikely to come from a homogeneous region with Gaus-
data pixels. sian distribution. Nevertheless, this is a regime where
poor estimates of the covariance are due to the limited
number of training samples, as observed in the curves
All experiments in this section were performed usinfpr detectors using the sample covariance. On the other
the Blindrad hyperspectral dataset [18], a HyMap imag&and, the results suggest that the regularized methods
of Cook City, MT of 800 x 280 pixels, each with 126 perform best with smaller window sizes. Finally, the

V. EXPERIMENTS



Fig. 2. RGB rendering of th800 x 280 pixel Blindrad hyperspectral dataset, captured using a HyMap sensorl@iihchannels.
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Fig. 3. Coverage plots with the expected ellipsoid log-uwéws. probability of false alarm for various outer window sizes.
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Fig. 4. Expected ellipsoid log-volumes. the dimension of the sliding window fixed probabilities ofsalalarm in both the original, (a) and
(b), and the quasilocal, (c) and (d), coordinate systems.

practitioner can use the curves in Fig. 4 as a criterion tmvariance methods to work with even smaller window
select the window size that produces the most accuraiees.
detector for a chosen covariance estimation method.
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